
2/02/95
3. Basic Features of Real Variables in the CREATE Step

3.1 Introduction

Chapter 2 illustrated the general purpose of the CREATE step: to prepare a VPLX tally file of
replicate totals from an incoming file of individual observations. The resulting VPLX file is the
essential connection to the rest of the system. For example, the DISPLAY step can display
estimates, standard errors, covariances, correlations, and t-tests based on the VPLX file.
Alternatively, the TRANSFORM step can derive new variables that are functions of sample totals
and include them on a new VPLX file, which in turn can be input to DISPLAY. Every VPLX
file is either a direct output from a CREATE step or is a descendent of a file from a CREATE
step.

Most of the commands in the CREATE step focus on the treatment of the individual observations.
For example, such statements specify how VPLX is to read observations from data files, recode
some variables according to specified conditions, assign constant values to some variables, or
treat some variables as categorical. A few commands in the step instead specify the contents of
the outgoing VPLX file. Examples of both types of statements appear in this chapter.

This chapter presents some of the basic features of the CREATE step for real variables. The
selection attempts to identify the subset of most frequently used commands. Subsequent chapters
introduce other types of variables -- real with missing, categorical, crossed real, crossed
categorical, and class -- that may also appear in the CREATE step. Other chapters describe
additional features of the CREATE step, such as logical operators and declaration of scratch files.

The treatment of real variables in VPLX generally parallels analogues in languages such as
FORTRAN and SAS. For the benefit of those familiar with the SAS language, Appendix B,
Section B.2, translates VPLX commands into their SAS equivalents or near equivalents.

Chapter 4 describes how real variables created by the commands in this chapter may be displayed.
Chapters 3 and 4 are essential reading as a background for almost any VPLX application.

Summary of this chapter:

• Section 3.2 describes the file specifications in the CREATE statement.

Sections 3.3-3.11 describe and illustrate operations to observation-level data:

3.2

• Section 3.3 introduces essential statements, INPUT and FORMAT, to read data from a
standard character data file.

• Section 3.4 covers the CONSTANT statement used to assign constant values to variables.

• COPY in Section 3.5 copies the value of one VPLX variable into another.

• IF-THEN-ELSE in Section 3.6 permits conditional execution of many CREATE
statements.

• Section 3.7 describes the elementary arithmetic operators ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

• PRINT in Section 3.8 displays the values of variables at the observation level.

• Section 3.9 illustrates the features introduced in Sections 3.2-3.8.

• LINK in Section 3.10 names additional input files with information that may be combined
to form the observation. Each LINK statement then may be followed by its own INPUT
and FORMAT statement. Conditional linkage, one-to-one, and one-to-many linkages are
possible.

• Section 3.11 illustrates LINKing.

Sections 3.12 - 3.15 concern statements affecting the contents of the resulting VPLX file:

• SELECT in Section 3.12 allows the user to determine which observations are to be added
into the overall estimates.

• Section 3.13 describes the WEIGHT statement, which allows the identification of a
weight variable, the reserved variable name weight , and related statements.

• Section 3.14 introduces DROP and KEEP, which may be used to specify the variables to
be included in the output VPLX file.

• LABEL in Section 3.15 provides labels for use in DISPLAY.

3.3

3.2 CREATE Statement

3.2.1 General Form. A line with CREATE starting in column 1 signals the beginning of a
CREATE step. The statement must also specify two files. One file is an existing character input
file, containing numeric data, to be read by VPLX, and the other is the output VPLX file. The
program will terminate in error if the input file does not exist, but the output file may be either
a new or existing file. If the output file exists, it will be overwritten.

As is the case generally with file specifications for VPLX steps, the output file must be different
from the input file.

The syntax is:

CREATE IN = fname1 OUT = fname2

The length of each file name is limited to 80 characters. The form of fname1 and fname2
depends on the host system. In many environments, either specification may be the full name or
partially shortened name (depending on default directories, etc.) of the file.

Sections 10.2-10.3 detail the specification of files for VPLX, including system-dependent
features. A few examples are given here, however, as a guide.

In a PC DOS environment, the CREATE statement might take the form:

create in = c:\survey\datafile.dat
 out = c:\survey\datafile.vpl

or, if c:\survey is the current directory, simply

create in = datafile.dat out = datafile.vpl

As long as full names are specified, however, it is not necessary for the two files to be in the same
directory or DOS drive. For example, the input file may reside on a CD-ROM drive, d:,while
the output file must be directed to a drive for which the user has write access, such as a standard
hard disk, c:. The .vpl extension on the file name is recommended as a way of identifying VPLX
files, but this convention is optional.

Naming of files under UNIX is similar, although not identical, to DOS. (For example, UNIX
employs " / " instead of " \ " in naming subdirectories.)

3.4

create in = /data5/datafile.dat
 out = /tmp/datafile.vpl

UNIX distinguishes between lower and upper case in naming files, so that file names must be
spelled in the correct case, unlike DOS. In most other respects, however, VPLX is case-
insensitive.

In a VAX VMS environment,

create in = user$:[user_name.survey]datafile.dat
 out = temp$:[user_name]datafile.vpl

illustrates the naming of files. Default directories or shortened names may be used.

In some IBM environments under OS or CMS, it is necessary to use forms such as:

CREATE IN = VPLIN OUT = VPLOUT

where VPLIN and VPLOUT are externally defined DDNAMEs of no more than 7 characters,
requiring a DD statement in OS and a FILEDEF in CMS. It is also possible, in some versions of
IBM FORTRAN, to reference the DSNAME directly. Extensions of VPLX to OS and CMS that
would allow specification of file information, such as VOL=SER= etc., are currently under
development.

3.2.2 File Extensions. Note that in DOS, UNIX, and VMS, among other systems, the last part
of a file name is often called the extension and used to distinguish types of files. VPLX does not
enforce any particular system of file extensions. On the other hand, the author finds that
consistent use of a convention is quite helpful. The author's own preferences are:

.DAT for a character (e.g., ASCII) data set.

.VPL for VPLX files output from VPLX.

.CRD for files of commands to VPLX (1).

.VSK for files containing VPLX code (similar to .CRD) with unresolved substitutions
requiring the SET feature of VPLX (Section 10.10). These files are analogous to
macros in some other languages. In a production system, a .CRD file may contain
SET statements to define the substitution strings for the particular run, and then
reference one or more .VSK files through INCLUDE (Section 10.5).

3.5

.LIS for output "listings" from VPLX. These files could be sent to a printer, although
the author typically reads these files with an editor and actually commits a only
few to paper.

3.3 Essential Statements: INPUT and FORMAT

3.3.1 INPUT. Currently, the INPUT statement is a required part of the CREATE specification.
 The function of this statement is to identify the variables to be read from a character data file to
form an observation.

After INPUT in positions 1-5 of the statement, a list of variable names to be read from the input
file must follow. Rules on variable names follow in Section 3.3.2. Chapter 2 presented a number
of examples of the INPUT statement, including:

input rooms persons cluster

Variable names may appear on as many lines as necessary, as long as position 1 is left blank on
all continuation lines. (Virtually all VPLX statements may be continued in this way, exceptions,
such as ECHO OFF, are noted in the descriptions of the corresponding commands (2)) At the end
of the variable list, VPLX provides a count of the number of variables, which is sometimes useful
for checking.

All variables on the input list become initially defined as real variables. Subsequent statements
in the CREATE step can change their type or create new variables of different types from them.

3.3.2 INPUT Options: An optional but helpful feature requests VPLX to print observations at
the beginning of the file for purposes of assuring that the data are correctly read. For example:

input rooms persons cluster / option nprint = 3

will print the first 3 observations read from the file. In general, nprint may be set to any
positive number, although usually printing a few observations provides an adequate check.

The actual printing occurs as VPLX begins to carry out the CREATE step. Consequently, the
resulting printing of input observations does not generally immediately follow the INPUT
statement in the listing, but instead follows the listing of all commands associated with the
CREATE step.

3.6

Another option directs VPLX to stop reading the input file after a specified number of
observations have been read. This feature is occasionally useful for debugging VPLX
applications. The syntax is,

input rooms persons cluster / option nobs = 4

for example. Both nprint and nobs may be specified together in either order:

input rooms persons cluster / options nprint = 3
 nobs = 4

Note that option and options are both accepted spellings.

3.3.3 Kinds of Data That VPLX Reads. In general, the INPUT and FORMAT features of
VPLX are among the most FORTRAN-constrained features of the system. VPLX reads only one
type of data, real numbers. Integers may be read in this form, that is, VPLX has no difficulty
reading example 1. in Exhibit 3.1 with the format (F1.0).

example positions on record
 00000000011111111112
 12345678901234567890

1. 1
2. 1.
3. 27
4. 2.7
5. .27000D+02
6. .27000E+02
7.

BUT NOT

8. .
9. Y

Exhibit 3.1 Numbered examples of types of data that VPLX can and cannot read. Position numbers
1-20 are indicated above the examples by the 2-line numbering scheme. Example 7 will be read as 0.
Because of FORTRAN standards, VPLX cannot reliably read the solitary point illustrated by example
8 with floating-point edit descriptors in the FORTRAN format. Except for the special meaning of "D" or
"E" as they appear in examples 5 and 6, VPLX cannot read characters such as those illustrated by
example 9.

3.7

VPLX is unable to read character strings of alphabetic characters, e.g. "Y" in example 9., "CPS",
etc. It is, however, able to interpret examples 5. and 6., which represent numbers in scientific
notation.

FORTRAN, and therefore VPLX, reads fields that are entirely blank, such as example 7., as "0"
when reading real numbers. This is different from SAS, which generally treats blanks as missing.

SAS reads fields containing only "." as a missing value, such as example 8., whereas FORTRAN
generally does not tolerate these values, although the treatment may vary somewhat from one
FORTRAN environment to another. Consequently, fields of "." alone must be avoided on input
to VPLX. (Of course, a decimal point included as part of a number, such as examples 2. and 4.,
is perfectly normal to FORTRAN.)

3.3.4 FORMAT. A separate FORMAT statement must be used to specify the FORTRAN
format of the incoming variables. The format should describe the layout of the entire observation,
corresponding to the entire list of variables on the INPUT statement, which may extend over more
than one record. The primary edit descriptors are "F" and "D" format for input variables, "X" to
denote skipped spaces, " / " to read the next record to continue processing the same observation,
and " (" and ") " to bound the format and segments of description to be used multiple times.
Each of these is described more below. Except to change "f", "d", and "x" to upper case, and to
remove blanks, VPLX does not edit or scan the format, and relies on the FORTRAN
implementation to use the format in reading the input file. The format should specify as many
fields as the number of variables in the INPUT statement.

The format may be continued onto additional lines, if necessary. VPLX will squeeze out
extraneous blanks, but the total length of the format may not exceed an upper limit depending on
the installation. For the PC version, this limit is 2560 non-blank characters (3).

Unless there are linked files, as described in Section 3.9, the FORMAT statement may appear
anywhere in the CREATE statement. For purposes of checking, however, it is good practice to
place the FORMAT near the INPUT statement.

3.3.5 FORTRAN Edit Descriptors. FORTRAN edit descriptors describe the contents of
positions on one or more records. The primary forms for VPLX are:

Fw.d - For a right-justified floating-point number. The width, w, is a positive integer (>0)
specifying the total number of positions occupied by the number, and d is a non-negative integer
(0 d w) specifying the number of places after the decimal. If a decimal point is present, then
it automatically overrides d, that is, the number will be correctly read regardless of d. Without
a decimal, if d=0, then the number will be read as the floating point representation of an integer.

3.8

For example, F1.0 may be used to read a number in the range 0-9 from a single position. In
Exhibit 3.1, F1.0 translates example 1. into the number 1. F2.0 translates the two characters "27"
in example 3. into the number 27, but F2.1 translates example 3. into 2.7 and F2.2 into .27.

The decimal present in example 4. overrides any distinction between F3.0, F3.1, F3.2, or F3.3;
thus, 2.7 is read in all cases.

Although leading zeroes are completely unnecessary before a decimal point, leading zeroes after
an implied decimal point help to assure that the value is correctly read. For example, the number
4 will be correctly read from " 4" by F3.0, but reading " 4" with F3.3 may produce results that
vary by FORTRAN implementation, and it is better to avoid this situation. (A safe alternative
in this case is to read the number with F3.0 and then divide it by 1000 using the DIVIDE
statement in Section 3.8.)

Warning: Left-justified numbers, with trailing blanks in the range covered by w, pose potential
problems for some FORTRAN implementations. For example, all FORTRAN implementations
read " 4" with F3.0 as 4., but their reading of "4 " is less predictable. For safety, users should
always right-justify variables. (Users who employ SAS to manipulate their data for input to
VPLX can accidentally produce left-justified data by using character variables. The situation is
safer with real (numeric) items, however, since SAS right-justifies real (numeric) data output with
a SAS PUT statement from a DATA step.)

Dw.d - For right-justified scientific notation in FORTRAN. The number is expressed as a
fraction followed by a power of 10. The width, w, is a positive integer (>0) specifying the total
number of positions occupied by the number, and d is a non-negative integer (0 d<w) specifying
the number of places after the decimal for the fraction, although it is advisable to always
explicitly include the decimal point. For example, " .200D+01" is read by D9.3 as 2. Both
examples 5. and 6. in Exhibit 3.1 are read by D10.5 as 27. This descriptor is infrequently used
with survey data, but is convenient for covariance matrices.

wX - To skip w positions. This may be used to skip over blanks, data not referenced by INPUT,
and alphabetic data that VPLX cannot directly read. For example

input psu segment
format (f3.0,3x,f4.0)

would skip over positions 4-6, which could contain "CPS" or other data that VPLX cannot read
directly.

/ - To skip to the next record in the observation. For example:

3.9

1) If an observation is on a single record, " / " should not be used.

2) If the observation is on two records, " / " should be used once to indicate the point at
which reading should begin from the second record. If the information is only on the
second record, " / " should precede other descriptors to indicate that FORTRAN should
go to the second record immediately. For example

input psu segment weight repw1 - repw48
format (/,f3.0,3x,f4.0,49f8.2)

skips the first of two records and goes immediately to the second. If the information is
instead only on the first record, the format should end with " , /)"

input psu segment weight repw1 - repw48
format (f3.0,3x,f4.0,49f8.2,/)

 to indicate that the second record should be skipped over entirely.

3) If the observation is on three records, two " / "'s should appear in the format.

Both Fw.d and Dw.d may be preceded by a multiplier. For example, "3F2.0" in a format is
equivalent to "F2.0,F2.0,F2.0". Besides saving space, use of multipliers often makes the format
easier to check.

The format must start with "(" and end with ")", but internal sets of parentheses can be set up,
typically preceded by a multiplier. This feature is illustrated in the following example.

create in = temp$:[r_fay]w2vplx1.dat
 out = temp$:[r_fay]vplx1.vpl
input sexw2 agew2 degree degreex tm8428 racew2 workact

waitw2 totinc earnings repf1 - repf100
format (7x,f1.0,f3.0,3x,f1.0,1x,f1.0,f2.0,2f1.0,f8.5,2f10.1,
 12(/,8f10.7),/,4f10.7)

In this example, the input statement defines 110 variables to be read from the input file, and the
format statement that follows specifies their locations on a file that has 14 records per
observation. The first variable, sexw2, is read from position 8 of the first record. The second,
agew2, occupies positions 9-11. Because 3 more positions are then skipped, degree is read
from position 15. The remaining variables up through earnings are read from the first record.
The next part of the format gives a segment to be used 12 times. On each of the 12 uses, the first
step is to go to the next record, so that, for example, repf1 is read from positions 1-10 of the

3.10

second record. Note that, because the observation corresponds to 14 records, the format accounts
for 13 " / "'s.

3.3.6 Programming Hint: INPUT and FORMAT. Errors in the format, or mismatches in
length or order between the list of input variables and the format are perhaps the most frequent
source of user error during the CREATE step. Unlike spelling and syntactic errors, which VPLX
generally spots immediately, errors in the format do not surface until VPLX attempts to use it to
read the input file. It is good practice to devote careful attention to the format and input list
initially and then to change them as little as possible. It is usually better to read in unneeded
variables and drop them from the VPLX file through use of statements such as DROP or KEEP
than to modify a working INPUT and FORMAT pair in order to avoid reading extraneous
information. (This is an instance where "if it's not broken, don't fix it" applies.)

If a CREATE step produces unusual results, the INPUT and FORMAT statements are almost
always suspects. The first recourse is to print a few observations, or several, if necessary, using
/options nprint = on the INPUT statement, if this was not initially done.

3.3.7 Variable Names. VPLX variable names must begin with a letter or underscore, "_", and
contain a combination of 1-12 letters, underscores, and digits. A few variable names are not
allowed: AS, BLOCK, BY, CLASS, FOR, IF, INTO, KEY, MEAN, MEANS, MINUS, N,
OPTION, OPTIONS, PERCENT, PERCENTS, PERCENT1, PERCENT2, PLUS,
PROPORTION, PROPORTIONS, PROPORTION1, TOTAL, TOTALS, and TOTAL1, since
these are elements of the syntax. Longer names, such as MEAN_INCOME, that imbed any of
these terms are acceptable. (Except for the allowed length of 12 instead of 8, these rules follow
those for SAS variable names.) Note that the minus sign ("-") and other special symbols are not
allowed as part of a variable name.
VPLX treats upper and lower case spellings as equivalent; for example, MEAN_INCOME ,
mean_income , and even Mean_income all refer to the same variable.

Some variable names, such as WEIGHT, CLUSTER, STRATUM, can and should be used with
reserved meanings assigned by VPLX. For example, WEIGHT identifies a variable normally to
be used as a weight for the observations. Nonetheless, in some cases statements in VPLX allow
these reserved meanings to be overridden.

Variable names REPW, REPW0, REPW1, REPW2, ..., or REPF, REPF0, REPF1, REPF2, ...,
have an entirely reserved meaning, and can only be used to represent replicate weights or factors,
respectively. Chapters 12 and 15 explain these uses.

Some other variable names have reserved meanings in specific contexts. For example, when a
HADAMARD statement appears in a CREATE or REWEIGHT step, variable names ROW1,

3.11

ROW2, ... and COEF1, COEF2, ... etc., refer to variables to be used to create either replicate
factors or weights. Outside this context, however, the names ROW1, ..., COEF1, etc., do not
have a reserved use.

3.3.8 Variable ranges. When names of variables end with one or more digits, the SAS
convention of a single "-" may be used to list a string of variable names that increment the ending
digits. For example, month1 - month12 refers to 12 variable names: month1 , month2 ,
month3 , ..., month9 , month10 , month11 , and month12 . Note that the ending digits do
not have leading 0's. For example, VPLX translates month01 - month12 into month01 ,
month2 , month3 , ..., month 9, month10 , month11 , and month12 , which may not be
the intended extension.

A less frequently used feature, and one which is more difficult to master, employs a double dash
"--" between two variable names to indicate a range of previously defined variables in the order
in which they have been defined. For example,

input rent gas electric water
constant 12 into c12
multiply rent -- water by c12

uses features to be described in Sections 3.4 and 3.7. The double dash indicates all variables, in
this case rent , gas , electric , and water , that have been defined between the starting and
ending variables given. The double dash "--" may not be used in the INPUT statement or other
situations that define variables. The order of variables on the INPUT statement establishes their
incoming order, and subsequent statements defining variables effectively add these variables onto
the list of defined variables. (Although the "--" feature is offered and documented here for
completeness, new users are encouraged to avoid it, unlike the frequently useful and generally
straightforward single "-" just described.)

3.4 CONSTANTS

Constants may be copied into real variables. The resulting real variables may subsequently be
treated like other real variables. As a simple example:

CONSTANTS 1.0 into x1

copies the value 1 into x1. The variable x1 may either have previously existed or may be newly
defined by this statement.

3.12

A more general form of the statement permits simultaneous assignment of constants of a whole
group of variables. The general form is:

CONSTANTS clist1 into vlist1 [clist2 into vlist2]

where clist1 is a list of one or more constants, and vlist1 is a list of equal length of variable
names. The constants in clist1 may be written with or without decimal points or may be in
FORTRAN Dw.d format. Commas may optionally appear. As an example,

constants 1 2. .37, 17, 17, 17 , -.26713d-07 -.26713d-07
 into c1 - c8 .5 into half

In the first part of the statement, 8 values are assigned into 8 variables. Multipliers, such as 3*,
may be used to denote repeated values. Thus, the following statement has the same effect as the
previous one:

constants 1 2. .37, 3* 17 , 2 * -.26713d-07 into c1 - c8
 .5 into half

On occasion, it may be advantageous to read the values of the constants from another file. VPLX
has an INCLUDE feature that is useful for this purpose and many others.

constants
include factors1.dat
 into f1 - f20

where factors1.dat is a separate character file with 20 constants in the required form, i.e.,
free-format, with or without commas, on records ending by position 80, etc. VPLX will
temporarily read from this file before returning to the original command file to complete
processing of the CONSTANTS statement. Section 10.5 further describes INCLUDE and its
applications.

Note: VPLX accepts CONSTANT as an alternative spelling of CONSTANTS. In general, any
keyword whose English meaning is changed from singular to plural by addition of an "s" may be
spelled in either form.

3.5 COPY

The COPY statement copies the current value of a real variable into another. As a simple
example:

3.13

COPY x1 INTO y1

places the value of x1 into y1. The statement does not change x1. If y1 already exists, its
current value is overwritten.

The syntax of the general form of the statement is:

COPY varlist1 INTO varlist2 [varlist3 INTO varlist4 ...]

where varlist1 contains previously defined variables, and varlist2 contains the new target
variables, etc. (The brackets " [" and "] " enclose an optional extension. In general, such
brackets are used throughout the documentation to denote optional parts of the syntax.) The
variables in varlist2 will have the same attributes as those in varlist1 at the point the
COPY statement appears. Subsequent operations on variables in varlist1 will not be
automatically reflected in their counterparts in varlist2 , however. For example,

constant 1. into x1
copy x1 into y1
constant 2. into x1

will produce y1 with the value 1. and x1 with the value 2. at the end of these three statements.

3.6 IF, ELSE IF, ELSE, END IF

3.6.1 General Features of IF Blocks: VPLX includes a blocked if-then-else construction
similar to FORTRAN or to SAS. As a simple example:

input x1 x2
format (2f1.0)
if x1 (1-3) then
constant 1 into flag1
else if x2 (1-3) then
constant 1 into flag1
else
constant 2 into flag1
end if

The logic of this sequence is visually clarified through indentation (Section 3.6.2):

3.14

input x1 x2
format (2f1.0)
if x1 (1-3) then
_ constant 1 into flag1
else if x2 (1-3) then
_ constant 1 into flag1
else
_ constant 2 into flag1
end if

After x1 and x2 are read from the input file, x1 is first checked for a value in the range of 1-3.
If the value of x1 falls in the range, then flag1 is assigned the value 1; otherwise x2 is now
similarly checked and the same action taken, else flag1 is set to 2. Consequently, at the end
of this sequence, flag1 is assigned either the value 1 or 2.

In general, the construction begins with an IF statement of the form:

IF [(] vname (range) [)] THEN

One or more VPLX commands may then follow, which will be executed for the observation only
if vname falls in range . Optionally, one or more statements may then follow:

ELSE IF [(] vname (range) [)] THEN

The statements that follow are executed only if the condition is true and if the conditions for all
previous IF or ELSE IF statements are false. Whether or not any ELSE IF statements are used,
a single:

ELSE

may follow. The subsequent VPLX statements will be executed if the previous conditions have
not been met. In all cases, however, the sequence must be ended by:

END IF

One END IF must appear for each IF.

VPLX begins the processing of each observation by setting all variables to 0 before reading data
from the primary input file or any other operations (4). Consequently, if a variable is explicitly
defined within an IF block under conditions that are not met for a particular observation, the
variable will have the value 0. To modify the initial example,

3.15

input x1 x2
format (2f1.0)
if x1 (1-3) then
_ constant 1 into flag1
else if x2 (1-3) then
_ constant 1 into flag1
end if

will result in flag1 taking either the values 1 or 0.

IF blocks may be imbedded, up to 7 deep. When the level becomes 2 or more deep, VPLX
reports the level of each IF, ELSE IF, ELSE, and END IF statement. The example in Section 3.9
illustrates this feature. Again, indentation improves the visual interpretation of imbedded IF
blocks:

input x1 x2
format (2f1.0)
if x1 (1-3) then
_ if x2 (1-3) then
_ constant 1 into flag2
_ end if
_ constant 1 into flag1
else if x2 (1-3) then
_ constant 1 into flag1
end if

will result in flag1 and flag2 each taking either the values 1 or 0. Flag1 represents a
logical "OR" of the conditions that x1 falls into (1-3) and x2 falls into (1-3); flag2 gives a
logical "AND" of the two conditions. The 4th line of the example begins an imbedded IF block
that ends at the 6th line.

The logical restrictions on the use of IF blocks are the same as FORTRAN or SAS. For example,
if an IF block at the first level contains an IF block at the second level, the second-level IF block
must be concluded with its END IF before an ELSE IF, ELSE, or END IF at the first level
appears. The second-level IF block starting at the 4th line and ending at the 6th in the preceding
example is a case in point.

Use of a consistent style of indenting lines to represent the logical nesting should help to write
commands complying with these rules.

3.6.2 Indenting Commands. The examples in Section 3.6.1 illustrate indentation. Although
VPLX commands have been described as beginning with a key word in position 1, they may

3.16

optionally be indented by placing a " _ " in position 1 and then placing the key word in some later
position. If the VPLX command is continued on additional lines, however, the continuation lines
should begin with blank in position 1.

This feature is especially useful for IF blocks. Section 3.6.1 emphasizes the point that indenting
the commands within the scope of an IF block improves the programming clarity.

3.6.3 Range specifications. The syntax for range specifications is similar for IF, ELSE IF,
SELECT, CATEGORICAL, CLASS, and other statements. This section provides rules for all
of these applications, even though some aspects are not applicable to IF.

A range may represent a single value, such as 1, a bounded range, such as 1-3, or an open ended
range, such as low - 1.00. A range specification may include more than one such element,
separated by commas. The commas serve to prevent ambiguities:

if x1 (1-3) then

if x1 (1,-3) then

the first of the two checks the single range from 1 to 3 while the second checks for the numbers
1 or -3 (5). Each single value or range must be separated by commas, whether or not an
ambiguity would occur in the specific instance.

In addition, the following may be used in range specifications:

low - to indicate the lowest possible number, when used as a lower bound in a range.
For example, low - -50 indicates any number less than or equal to -50.

high- to indicate the highest possible number, when used as an upper bound in a range.
For example, 100000 - high indicates 100,000 or higher.

res - (for "residual") to represent any value not previously classified. It excludes,
however, instances in which a real with missing (Chapter 5) or crossed real
(Chapter 6) variable is missing. This range is not generally used with IF
statements, but instead with CATEGORICAL, and CLASS statements (6).

In interpreting ranges, VPLX implements the SAS convention that any number within 10 of an-12

integer is that integer.

If the upper end of a range includes a decimal fraction, it is implicitly continued with 9's instead
of 0's, e.g. the range (1-1.9) will include any number from 1-10 to 2-10 in the interval.-12 -12

Similarly, anticipating the syntax used for CAT and CLASS statements, (1.0-1.09/1.1-1.19/1.2-

3.17

1.29) will assign values from 1-10 to 1.0999999... to the first category, 1.1 to 1.1999999... to-12

the second, and 1.2 to 1.29...... to the third.

Lower ends of ranges are not altered except by the imposition of the rule that any number within
10 of an integer is that integer. Thus, an integer at the lower end is extended downward by 10-12 -

, as illustrated in the previous example. Other lower ends are not altered. 12

Warning: Implementation of these rules produces an unusual consequence: the range (low - 0)
is actually interpreted by VPLX as (low - .99999999999). If the intended range is effectively any
negative number, then this is achieved either with (low - 0.00000000000) or (low - -.1d-11).

3.7 ADD, SUBTRACT, MULTIPLY, DIVIDE

ADD, SUBTRACT, MULTIPLY, and DIVIDE operate on real variables to produce a real
outcome. As an example:

add x1 plus c1

This first form stores the sum back into x1 without changing c1. Alternatively, the sum may be
placed into a different target:

add x1 plus c1 into y1

These first two examples illustrate a general rule for ADD, SUBTRACT, MULTIPLY, and
DIVIDE: either the result is placed into variables explicitly identified by a list following INTO,
or the result is stored back into the first operator or set of operators. The second operators, for
example, c1 above, are never changed unless they follow INTO.

ADD may be used on strings of variables as well. One form is:

add x1 - x6 plus c1

which adds c1 to all six of the variables. Another form adds in pairs:

add x1 - x6 plus c1 - c6

which places into x1 the sum of x1 and c1, x2 the sum of x2 and c2, etc. Alternatively, the
sums may be placed into new variables:

add x1 - x6 plus c1 - c6 into y1 - y6

3.18

Another possibility is:

add x1 - x6 plus c1 into y1 - y6

Finally, a form specifies the summation of several variables into a single target:

add x1 - x6 into sum1

Warning: In general, it is better not to include a variable more than once on a list for a given
operation, since ambiguities may ensue. For example,

add x1 plus x1

has a straight-forward interpretation, which is to double the value of x1. On the other hand, avoid

add x1 x1 plus x1

The implementation in VPLX results in multiplying the initial value by 4, which may not be what
the user expects.

The general forms of ADD are:

ADD vlist1 PLUS vname

ADD vlist1 PLUS vlist2

ADD vlist1 PLUS vname INTO vlist2

ADD vname PLUS vlist1 INTO vlist2

ADD vlist1 PLUS vlist2 INTO vlist3

ADD vlist1 INTO vname

For the first two forms, the outcome is placed back into vlist1 . For the last form, vlist1
must include two or more variables.

Rules on list lengths: In cases where vlist1 and vlist2 both have multiple elements, the
lists must be the same length or VPLX terminates, since the meaning of the intended operation
would be ambiguous. Similarly, the length of vlist3 must match the lengths of vlist1 and
vlist2 if both lists have multiple elements in the next to last form. These rules apply for
MULTIPLY, SUBTRACT, and DIVIDE as well.

3.19

The forms for MULTIPLY parallel those for ADD:

MULTIPLY vlist1 BY vname

MULTIPLY vlist1 BY vlist2

MULTIPLY vlist1 BY vname INTO vlist2

MULTIPLY vname BY vlist1 INTO vlist2

MULTIPLY vlist1 BY vlist2 INTO vlist3

MULTIPLY vlist1 INTO vname

The same rules apply as for ADD, including rules on list lengths.

The available forms for SUBTRACT are:

SUBTRACT vlist1 MINUS vname

SUBTRACT vlist1 MINUS vlist2

SUBTRACT vlist1 MINUS vname INTO vlist2

SUBTRACT vname MINUS vlist1 INTO vlist2

SUBTRACT vlist1 MINUS vlist2 INTO vlist3

Note that SUBTRACT lacks a version of the final form listed for ADD and MULTIPLY.
Otherwise, the previous rules apply.

DIVIDE parallels SUBTRACT:

DIVIDE vlist1 BY vname

DIVIDE vlist1 BY vlist2

DIVIDE vlist1 BY vname INTO vlist2

DIVIDE vname BY vlist1 INTO vlist2

DIVIDE vlist1 BY vlist2 INTO vlist3

3.20

If the denominator is 0, 0 is the outcome (7).

Note that DIVIDE, like SUBTRACT, also lacks a version of the final form listed for ADD and
MULTIPLY. Again, previous rules apply otherwise.

3.8 PRINT

The nprint = option in the INPUT statement, described in Section 3.3.2, requests printing of
the variable values, generally for purposes of checking VPLX applications. The PRINT
statement, first available in version 94.06, offers an additional means to check observations. As
an example:

print rooms persons cluster

PRINT may also use the nprint = option.

print rooms persons cluster / option nprint = 3

In general, nprint may be set to any positive number.

PRINT may be placed inside of an IF block, thus allowing the user to define conditions under
which to print the case. The value of nprint is compared to the number of observations actually
printed, rather than an unconditional count of the number of observations. Consequently, the user
can request to see the first 100 cases meeting some unusual condition, regardless of the number
of observations that must be screened to find these cases.

3.9 An Example of Real Operations

The following example intersperses several comments describing operations on real variables.

comment EXAM11

comment This example starts from the data similar to EXAM4 but adds
 an additional variable TENURE.

create in = exampl11.dat out = exampl11.vpl

input rooms persons cluster tenure / option nprint = 3

 4 variables are specified

format (4f2.0)

3.21

comment The input data set contains
 5 7 1 2
 6 8 2 2
 5 2 3 1
 4 1 4 2
 8 4 5 1
 8 2 6 1

comment Create an individual-level ratio of rooms to persons

divide rooms by persons into proom_indiv #1

comment For purposes of illustration, use the IF construction to
 obtain totals for renters and owners.

if tenure (2) then #2

_ copy rooms persons into rooms_rent persons_rent

_ constant 1 into rent_count

_ comment print cases where the number of rooms is 2.0 or more times
 number of persons, for renters only

_ if proom_indiv (2 - high) then #3
 (If level: 2)

_ print rooms persons cluster
 *** PRINT request 1

_ end if
 (If level: 2)

else if tenure (1,3) then

_ copy rooms persons into rooms_own persons_own

_ constant 1 into own_count

end if

comment unconditionally print variables to here.

print rooms persons cluster tenure proom_indiv #4
 rooms_rent persons_rent rent_count
 rooms_own persons_own own_count

 *** PRINT request 2

 (Simple) jackknife replication assumed

 Size of block 1 = 11

 Total size of tally matrix = 11

 Unnamed scratch file opened on unit 13

 Unnamed scratch file opened on unit 14

3.22

**** End of CREATE specification/beginning of execution

Observation 1 from unit 12
 rooms 5.0000 persons 7.0000
 cluster 1.0000 tenure 2.0000
PRINT request 2
 rooms 5.000000
 persons 7.000000
 cluster 1.000000
 tenure 2.000000
 proom_indiv .714286
 rooms_rent 5.000000
 persons_rent 7.000000
 rent_count 1.000000
 rooms_own .000000
 persons_own .000000
 own_count .000000

Observation 2 from unit 12
 rooms 6.0000 persons 8.0000
 cluster 2.0000 tenure 2.0000
PRINT request 2
 rooms 6.000000
 persons 8.000000
 cluster 2.000000
 tenure 2.000000
 proom_indiv .750000
 rooms_rent 6.000000
 persons_rent 8.000000
 rent_count 1.000000
 rooms_own .000000
 persons_own .000000
 own_count .000000

Observation 3 from unit 12
 rooms 5.0000 persons 2.0000
 cluster 3.0000 tenure 1.0000
(Printing discontinued on unit 12) #5
PRINT request 2
 rooms 5.000000
 persons 2.000000
 cluster 3.000000
 tenure 1.000000
 proom_indiv 2.500000
 rooms_rent .000000
 persons_rent .000000
 rent_count .000000
 rooms_own 5.000000
 persons_own 2.000000
 own_count 1.000000
PRINT request 1
 rooms 4.000000
 persons 1.000000
 cluster 4.000000
PRINT request 2
 rooms 4.000000
 persons 1.000000
 cluster 4.000000
 tenure 2.000000

3.23

 proom_indiv 4.000000
 rooms_rent 4.000000
 persons_rent 1.000000
 rent_count 1.000000
 rooms_own .000000
 persons_own .000000
 own_count .000000

Exhibit 3.2 Example illustrating several forms of operations on real variables. The printing of the last
2 observations is not shown. Instances of IF blocks, DIVIDE, COPY, CONSTANT, and PRINT appear.

The INPUT statement includes a request for printing of the first 3 observations. Generally,
printing from INPUT statements displays two columns of variables, and is labeled "Observation
 n from unit u," where n and u represent specific values. Printing from PRINT statements
requires one line per variable and is labeled "PRINT request r."

The divide statement at #1 computes a ratio, proom_indiv , of rooms to persons at the
household level.

The IF block, beginning at #2, distinguishes renters from owners and prepares separate variables
for each subset. There is an imbedded IF block, beginning at #3, to display the basic
characteristics of any renter with proom_indiv at 2 or more. VPLX identifies the IF block as
level 2, since it is inside a level-1 IF block. VPLX also labels the PRINT request as 1, to
distinguish it from any other requests that may follow.

The PRINT request at #4 prints each observation, although Exhibit 3.2 ends the resulting display
after the fourth observation for the sake of brevity. VPLX numbers this PRINT request as 2.

After summarizing information about the replication method, the output from the requests follow.
For the first three observations, the printing from the INPUT statement appears first, followed by
the PRINTing of the longer list of variables from request 2. At #5, INPUT notes that it will cease
to print observations, since it has printed the requested nprint = 3 observations.

The fourth observation is the only one in the data set to trigger the PRINT request 1, since it is
the only observation that meets the criteria for tenure and proom_indiv . PRINT request 2
again follows.

3.10 LINKing FILES

3.10.1 LINK There are many circumstances in which the information for an observation must
be assembled from multiple files. Other languages such as SAS and FORTRAN are available to

3.24

do so. VPLX does not currently address all such situations, but it is able to handle some
important special cases.

The first requirement is that the IN= file in the CREATE statement must represent all potential
observations. Unfortunately, this requirement excludes some practical applications, including
instances in which one might want to interleave observations from different files. If the condition
is met, however, VPLX is then able to match to secondary files, each in any of the following three
ways:

1) A simple one-to-one match, in which the same number of records are on the
primary and secondary file.

2) A conditional match, in which information available from the primary file and any
previous secondary files is sufficient to determine whether a record should be read
from the secondary file in question. An INPUT statement may appear within an
IF block in this case.

3) A keyed match, in which the secondary file is matched to the primary file on the
basis of keys. The primary and secondary file must be in sort by these keys, and
this sort must not conflict with the sort required by the replication option, e.g.,
stratum and cluster for the stratified jackknife. For a given set of keys, there can
be only one record on the secondary file. Under keyed matching, VPLX checks
that one or more of the keyed variables change from the previous record for each
record from the secondary file. The INPUT statement may appear unconditionally
or within an IF block.

The LINK is of the form:

LINK fname

This statement declares a secondary file. It must be followed by a single INPUT and FORMAT
statement. The placement of LINK in the series of commands does not initiate reading from this
file, rather the placement of the INPUT statement determines when and under what conditions
the file should be read (8).

The first LINK statement in a CREATE step may only appear after the INPUT and FORMAT
statements for the primary IN= input file, to avoid ambiguity. Similarly, the INPUT and
FORMAT must be established for a linked file before another LINK statement may appear.

3.25

VPLX assigns a FORTRAN unit number to each linked file. VPLX uses this unit number as an
identifier to report the number of records read and in any warning or error messages. Currently,
VPLX does not retain the original file names for this purpose.

FORMATs must be established for each linked file in the same way as the primary file.

3.10.2 INPUT Under LINK

Unkeyed linking: Under the first or second ways listed to link files in Section 3.10.1, the INPUT
statement has the same syntax as previously described in Sections 3.3.1 and 3.3.2, including the
options to print or restrict the number of observations. The INPUT statement must list only new
variables, that is, variables that have not yet been defined. If INPUT appears within an IF block,
the general rule of Section 3.6.1 applies: the variables on the INPUT list will be initialized to 0
and will take new values only if the INPUT statement is executed.

Programming hint: Exactly 1 INPUT statement should appear. If the conditions under which
the file should be read are complex, for example, if the file should be read if either of two
variables take a specific value, then an approach is to create a flag and to use IF blocks to assign
it a value under all circumstances requiring the file to be read. One may then use a simple IF
block to check the value of the flag and use a single INPUT statement within the block (9).

Keyed linking: The third way listed in Section 3.10.1 provides for a keyed match of the files.
This situation is reflected in the syntax for the INPUT statement:

INPUT vlist / KEY keylist

or

INPUT vlist / KEY keylist /OPTIONS options

or

INPUT vlist /OPTIONS options / KEY keylist

where:

a) vlist and keylist are both lists of variables;

b) the variables in keylist are included in vlist;

c) the variables in keylist are previously defined;

3.26

d) the file specified by LINK is sorted by the variables in keylist ;

e) the records in the file are uniquely identified by the variables in keylist, that
is, no two records have identical keys; and

f) the variables in vlist but not in keylist have not yet been defined.

VPLX checks that all of these conditions hold, including enforcing d) and e) as it reads the
secondary file. These conditions allow VPLX to unambiguously match many observations from
the primary file to single records from the secondary file. For example, the primary file may
represent persons and the secondary file may have cluster-level sampling information.

If the match fails (including an end-of-file on the secondary file before the primary file), then
VPLX prints a message and terminates.

Unmatched records on the secondary file are discarded and not treated as an error. For example,
the secondary file may include cluster-level sampling information for clusters that yielded no
interviewed cases, and it is not necessary to remove such clusters from the secondary file. An
end-of-file on the primary file before the end on the secondary file is similarly not an error.

Providing a means to link one record on the secondary file to many records on the primary file
is only one of the advantages of keyed linkage. Another is security: use of keyed linkage based
on unique identifiers, if they are available, is a means to assure that the files have been correctly
matched.

3.11 Examples of LINKing Files

Two relatively self-explanatory examples illustrate linking. For simplicity, the TRANSFORM
step does not appear. In the first example, the estimates and standard errors from EXAM5 are
reproduced by linking information from two other files:

comment EXAM12

comment This example replicates EXAM5 but reads the data from
 different files.

create in = example1.dat out = example1.vpl

input cluster

 1 variables are specified

format (4x,f2.0)

3.27

comment The incoming data, on the file example1.dat, are:
 5 7 1
 6 8 2
 5 2 3
 4 1 4
 8 4 5
 8 2 6

comment The first link is through way 1, i.e., a simple 1-to-1

link example7.dat
 Assigned to unit 19 #1

comment EXAMPLE7.DAT contains:
 5 7 1 1 1 2 2 0 0
 6 8 2 1 1 0 0 2 2
 5 2 3 2 1 2 0 2 0
 4 1 4 2 1 0 2 0 2
 8 4 5 3 1 2 0 0 2
 8 2 6 3 1 0 2 2 0

input rooms persons

 2 variables are specified

format (2f2.0)

comment The second link is through way 3, i.e., keyed link

link example5.dat
 Assigned to unit 18 #2

comment EXAMPLE5.DAT contains the following data:
 5 7 1 1
 6 8 2 1
 5 2 3 2
 4 1 4 2
 8 4 5 3
 8 2 6 3

input cluster stratum / key cluster

 2 variables are specified

format (4x,2f2.0)

 Stratified jackknife replication assumed

 Size of block 1 = 3

 Total size of tally matrix = 3

 Unnamed scratch file opened on unit 13

 Unnamed scratch file opened on unit 14

 Unnamed scratch file opened on unit 15

3.28

**** End of CREATE specification/beginning of execution

 End of primary input file after obs # 6 #3

 End on unit 19 after obs # 6

 End on unit 18 after obs # 6

 3 strata observed on incoming file

display

list rooms persons total(rooms persons)

 Estimate Standard error

rooms : MEAN 6.0000 .2357

persons : MEAN 4.0000 .4082

rooms : TOTAL 36.0000 1.4142

persons : TOTAL 24.0000 2.4495

Exhibit 3.3 Example illustrating linking multiple files. Two files are linked: one by simple 1-to-1
matching, and one through keyed linking.

As noted in Section 3.10.1, the messages at #1 and #2 give the FORTRAN unit numbers to which
the files are assigned, which VPLX later references at #3 in reporting the number of records read
from each.

Note that VPLX successfully carries out the stratified jackknife option, even though the stratum
code is read from the third file. Note that the files are sorted by cluster , which increases from
1 to 6, permitting a keyed link on cluster .

The second example links a shorter file, within an IF block, to read in data only for owners:

comment EXAM13

comment This example builds on EXAM11, which first introduced
 tenure. An additional file is linked for owners

create in = exampl11.dat out = exampl11.vpl

input rooms persons cluster tenure

 4 variables are specified

3.29

format (4f2.0)

comment The input data set contains
 5 7 1 2
 6 8 2 2
 5 2 3 1
 4 1 4 2
 8 4 5 1
 8 2 6 1

if tenure (1) then

_ link exampl17.dat
 Assigned to unit 19

_ comment The input data set contains: #1
 3 100000 75000
 5 150000 100000
 6 100000 0

_ input assessment mortgage

 2 variables are specified

_ format (2x,2f7.0)

end if

print tenure assessment mortgage
 *** PRINT request 1

 (Simple) jackknife replication assumed

 Size of block 1 = 6

 Total size of tally matrix = 6

 Unnamed scratch file opened on unit 13

 Unnamed scratch file opened on unit 14

**** End of CREATE specification/beginning of execution

PRINT request 1
 tenure 2.000000
 assessment .000000
 mortgage .000000
PRINT request 1
 tenure 2.000000
 assessment .000000
 mortgage .000000
PRINT request 1
 tenure 1.000000
 assessment 100000.000000
 mortgage 75000.000000
PRINT request 1
 tenure 2.000000
 assessment .000000
 mortgage .000000

3.30

PRINT request 1
 tenure 1.000000
 assessment 150000.000000
 mortgage 100000.000000
PRINT request 1
 tenure 1.000000
 assessment 100000.000000
 mortgage .000000

 End of primary input file after obs # 6 #2

 End on unit 19 after obs # 3

Exhibit 3.4 Example illustrating linking files with different numbers of observations. The matching is
controlled by placing the INPUT statement within an IF block, so that values from the linked file are read
only for owners.

In this example, a separate data file, shown at #1, has been prepared only for owners. The file
contains the cluster number that the format skips in this example. The approach taken in this
example places the INPUT statement within an IF block and reads from the file only for owners.
Since the linkage is unkeyed, a new record from the secondary file is read each time the INPUT
statement is reached. PRINT is used here to show how the owners' data are correctly linked with
the intended records. The results from PRINT show that assessment and mortgage are set
to 0 for each renter.

The report at #2 gives the number of records read from each file. Again, as noted in Section
3.10.1, VPLX identifies secondary files by unit number.

3.12 Selecting Individual Observations: SELECT IF

As noted in Section 3.1, the statements described in Sections 3.12-3.15 are of a different character
than the preceding sections. These last four sections describe features that influence the contents
of the resulting VPLX file. In the previous sections, it was possible to illustrate the effects of
different statements by PRINTing the results, but the effects of this last group of statements to
be considered in this chapter are not directly evident in this way. Because the statements affect
the contents of the outgoing file, there effect is not immediately evident in terms of the values of
the variables during the processing of the observation.

The SELECT or SELECT IF statement may be used to determine what observations are included
in the file. This purpose is different from IF, since IF enables statements to be executed
conditionally. SELECT does not affect the execution of other statements. Instead, SELECT
determines whether the observation is to be included in the final results. The form is:

3.31

SELECT [IF] vname (range)

The optional IF included in the syntax improves the clarity of the meaning of the statement. The
specification by range should identify values of the variable for which the observation should
be included in the analysis. Section 3.6.3 specifies the syntax for range , which is the same as
used by IF. If the variable is not within the desired range, the case is dropped from all tallies,
regardless of the order of commands that precede or follow. In other words, SELECT has a
global effect on the inclusion of cases. For example,

select if degree_stat (1-3,8)

will include the observation in the analysis only if degree_stat takes a value between 1 and
3, or 8.

If two or more SELECT statements are included, then each such condition must be met for
inclusion of the observation.

Even if an observation is excluded from the output file through failing a SELECT IF condition,
CREATE will continue to process the case to the end, including effects of LINK, INPUT, PRINT,
etc.

Programming hint: It is advantageous to include SELECT statements at the end of the
CREATE specification. This placement emphasizes that other commands will be executed
regardless of the outcome of the conditions. It also more clearly represents the role of SELECT
in affecting the final disposition of the observation.

3.13 Weighting Cases: WEIGHT, weight, and UNWEIGHTED

The statement

WEIGHT vname

may be used to declare any defined variable as a weight. In the absence of this explicit command,
VPLX will assume that a variable with the name weight is to be used as a weight.

It is important to identify the weight to VPLX as soon as possible. For example, it is good
practice to include the WEIGHT statement just after the weight has been read from a file or its
value defined by calculation. Some features of CREATE, but particularly REWEIGHT, require
early identification.

3.32

An obscure but possibly useful option: It is also possible to include a variable with the name
weight but nonetheless carry out an unweighted analysis with the statement:

UNWEIGHTED

This last statement is only required for unweighted analysis if, for some reason, there is a variable
with the name weight present among the defined variables. For example, one might conduct
both a weighted analysis based on weight and then run a separate unweighted analysis, using
UNWEIGHTED, without changing an INPUT statement that contained weight .

3.14 Controlling the Contents of the Output: DROP and KEEP.

By default, VPLX will retain all defined variables on the VPLX file. Optionally, the user may
restrict the contents of the VPLX file by either a single DROP or KEEP statement. The form of
the statement is:

DROP vlist

KEEP vlist

Only one of these two statements may appear in the CREATE stop. Dropped variables will be
omitted from the output file, whereas only those analytic variables in the KEEP statement will
be included in the file. Either statement is evaluated with respect to the variables defined at the
end of the complete CREATE specification, in other words, the variables in vlist do not need
to be defined at the time the statement appears but must be defined by the end of the complete
CREATE specification. (Any use of the "--" syntax for variable ranges, however, requires that
the variables be defined by the time of reference.) Neither statement has any effect on weights,
class variables, replicate weights or factors, or survey identifiers required for the replication
method; these variables will be handled in the same way regardless of whether they appear on a
KEEP or DROP list. Any defined variable remains available for calculation during the CREATE
step, regardless of its status on the outgoing file.

3.15 Labels for Variables: LABEL

Variables may be assigned labels of up to 24 characters for use in displays. The form of this
statement is:

LABEL vlist1 'label1a',...
 vlist2 'label2a', ...

3.33

1. .CRD is an abbreviation of CARD. In the early 1970's, input to programs was often through 80-column
computer punch cards. Rubber bands, receptacles for cards, etc., were standard equipment of the
era. The author finds the abbreviation a useful mnemonic, but the user is free to chose another
convention.

2. The VPLX statements that do not allow extensions are restricted to those in Chapter 13. In each
case, such as ECHO OFF, the rest of the statement will conveniently fit on one line. Many VPLX
statements statements, such as INPUT, could require more that a single line to complete, and VPLX
allows multi-line continuations in all such cases. The examples throughout the documentation
frequently employ continuations.

3. This limit is on the number of characters of the specified format itself, not the total number of
characters in the input records that the format describes. Depending on the application, a 50-
character format may describe thousands of character positions on the IN= data file. If the constraint
proves a hinderance, however, it is possible to increase the maximum length by changing a parameter
in the FORTRAN source.

4. More precisely, the processing of each observation begins by putting 0's in the values of all variables
in situations in which any new variables are introduced within an IF block. If new variables are not
introduced within an IF block, then initializing variables to 0 is unnecessary and is skipped. For
simplicity, however, the reader may simply wish to consider all variables set to 0 at the beginning of
processing an observation.

5. This statement is generally correct, but a more precise statement requires the rules on decimal
extensions that follow. The range 1-3 actually becomes the range 1-10 to 4-10 . Although the-12 -12

range comes close to 4, it does not include it, and any number read as 4 from a file will not satisfy the
condition. Similarly, (1,-3) checks for 1-10 to 1+10 and -3-10 to -3+10 .-12 -12 -12 -12

6. Both real with missing variables and crossed real variables may be missing. If X1 is missing, then
 IF X1 (res) THEN

will not be satisfied. Hence, the following two statements
IF X1 (res) THEN
ELSE

can introduce subsequent statements that should only be executed when X1 is missing, (followed, of
course, by an END IF statement.) If X1 is a real variable, however, the statement

IF X1 (res) THEN
serves no purpose since it will always be satisfied.

7. If the 0 outcome is unsatisfactory, there are two alternatives. One is to check whether the divisor is
0 with an IF statement, and to do something special, such as to set a flag, in this case. The other
option is to use DIVIDE_MS in Chapter 5.

where the number of variables in each variable list matches the number of labels that follow. A
simple form of this syntax is to alternate single variable names with corresponding labels.

Alternatively, the keyword may be LABELS. For example:

labels sex 'Sex' total_earn earn_cat
 'Total earnings in 1985' 'Total earnings in 1985'

Every variable is initially labelled with its variable name, but a LABEL statement overrides this
default.

NOTES

3.34

8. Users familiar with SAS may wish to check further comments on this point in Section B.2. SAS INFILE
statements may be meaningfully interpreted within IF blocks, but in VPLX the LINK statement
identifies the next file to read, regardless of placement within an IF block. In VPLX, it is the placement
of the input statement that determines when data are read.

9. If one wants to read a file only if X1 is 1 or X2 is between 2 and 6, then
IF X1 (1) THEN
_ CONSTANT 1 INTO FLAG1
ELSE IF X2 (2-6) THEN
_ CONSTANT 1 INTO FLAG1
END IF
IF FLAG1 (1) THEN
_ LINK FILE1
_ INPUT V1 - V3
_ FORMAT (3F1.0)
END IF

